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Abstract

Identification of new drug–target interactions (DTIs) is an important but a time-consuming and costly step in drug
discovery. In recent years, to mitigate these drawbacks, researchers have sought to identify DTIs using computational
approaches. However, most existing methods construct drug networks and target networks separately, and then predict
novel DTIs based on known associations between the drugs and targets without accounting for associations between
drug–protein pairs (DPPs). To incorporate the associations between DPPs into DTI modeling, we built a DPP network based
on multiple drugs and proteins in which DPPs are the nodes and the associations between DPPs are the edges of the
network. We then propose a novel learning-based framework, ‘graph convolutional network (GCN)-DTI’, for DTI
identification. The model first uses a graph convolutional network to learn the features for each DPP. Second, using the
feature representation as an input, it uses a deep neural network to predict the final label. The results of our analysis show
that the proposed framework outperforms some state-of-the-art approaches by a large margin.
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Introduction
The identification of drug–target interactions (DTI) is an impor-
tant step in developing new drugs and understanding their side
effects [1]. Two experimental methods are widely used to identify
DTIs [2]: affinity chromatography [3] and protein microarrays
[4]. Due to the increasing number of synthesized compounds
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developed to target a large number of proteins and disease
processes, identifying DTIs using biological experiments is time-
consuming and costly [5], and very few true DTIs are found
using such methods [6]. Therefore, in recent years, researchers
have sought to identify DTIs using computational approaches
[7]. The existing computational DTI identification methods can
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be classified into three categories: text-mining-based methods,
biological-feature-based methods and network-based methods.

Identifying DTIs using text mining methods

Text-mining-based methods identify DTIs by extracting infor-
mation from the literature and using the descriptions of the
drugs and their targets as features [8]. Several methods, such
as ‘MAM’ [9], ‘PharmGKB’ [10] and ‘Chem2bio2rdf’ [11] measure
the associations between drugs and targets based on semantic
similarity. Recently, researchers have begun to take advantage
of machine-learning methods to identify DTIs using text-based
features. Fu et al. [12] proposed a semantic similarity frame-
work using random forest (RF) and support vector machine
(SVM) methods. However, the diversity of language expression
and conflicting information found in the literature limit the
performance of text-mining-based methods [13].

Identifying DTIs using biological feature-based
methods

Biological feature-based methods apply machine-learning
methods to extracted biological features of drugs and targets
to identify DTIs [14–16]. These methods usually include two key
components: feature extraction and DTI prediction. ‘SimBoost’
[17] trains a gradient-boosting machine model on the similarities
between drugs and proteins to learn their binding affinities.
‘NRLMF’ [18] uses the similarities between drugs and proteins
to model the probability that a drug will interact with a target
by logistic matrix factorization, a type of collaborative filtering
method. ‘BLM–NII’ [19] integrates neighbor-based interaction-
profile inference into a bipartite local model (BLM). These
methods improve the accuracy of DTI prediction to some
extent. However, these methods do not take drug–drug or
protein–protein interactions into account [20]. Of course, the
relationships between a disease process and a drug are far
more complex than the ‘one gene, one drug, one disease’
paradigm [21].

Identifying DTI using network-based methods

Network-based methods have gained broader attention in recent
years [22]. They mainly consist of two steps: network construc-
tion and DTI identification. Network-based methods calculate
the similarities between drugs and targets based on network
topology. Networks including drugs, proteins or both are built to
identify novel DTIs [7, 23, 24]. The bipartite graph is the most
common network structure in this type of method [25]. Drugs
and proteins are the nodes in the network, and edges are known
DTIs. The aim of this method is to predict unknown edges based
on the known edges. The basic idea is that drugs tend to bind
to similar targets and vice versa [22]. Therefore, calculating the
similarities between drugs and proteins plays a vital role in this
type of method. ‘DDR’ [26] constructs a drug–drug interaction
network and a protein–protein interaction network based on
the similarities between drugs and proteins. Then, they use
an RF method to infer combinations of drugs and proteins.
Several other methods also use this concept to predict DTIs [25,
27, 28]. Network-based methods generally achieve good predic-
tion accuracy and consider the associations between proteins
and between drugs [29]. However, these methods do not take
associations between drug–protein pairs (DPPs) into account.

Yamanashi et al. [30] classified target proteins into four cate-
gories: enzymes, ion channels, G protein-coupled receptors and

nuclear receptors. Many DTI identification methods have been
tested on this dataset, and most achieved high precision in terms
of both area under the curve (AUC) and area under the preci-
sion recall curve (AUPR) [25, 31]. However, since most existing
methods do not consider associations between different DPPs,
these methods do not perform well when applied to the Food and
Drug Administration (FDA)-approved drugs in DrugBank. ‘DrugE-
Rank’ [32] achieved more than 30% improvement in AUPR com-
pared to previous methods when tested in DrugBank, but the
highest AUPR was only 0.2831 among several tests, which means
that the false-positive rate was quite high. Recently, Olayan et al.
[26] developed the ‘DDR’ method, which achieved an AUPR of
0.63, 0.42 and 0.4 in three respective tests. Although DDR showed
great improvements compared with previous methods, it still
does not model the associations among different drug–target
pairs to reduce the false-positive rate.

Our aims

To address the pitfalls of these previous approaches, we propose
GCN-DTI, which combines a graph convolutional network (GCN)
[33] and a deep neural network (DNN) [34] to predict DTIs. GCN-
DTI transforms the edge prediction problem into a DPP classi-
fication problem. Here, a DPP is a combination of any drug and
any protein. If the drug and protein in a specific DPP can interact
with one another, it is labeled a true DPP and we can call it a
‘DTI’.

In our GCN-DTI model, drug networks and protein networks
are used to generate a DPP network. In the DPP network, each
node is a DPP, and the edges of the DPP network are inferred
by the respective drug and protein networks. Therefore, our
DPP network contains information on the individual drugs and
proteins, drug–drug interactions, protein–protein interactions,
drug–protein interactions, and most importantly, associations
between DPPs. The GCN can extract the features of each DPP
according to the topology of the DPP network. After extracting
the features from this large network with a GCN layer, a DNN is
used to predict the labels of the DPPs.

The major contributions of this research are as follows:

(i) By integrating multiple types of interactions, we built a
DPP network in which the nodes are DPPs and the edges
represent the associations between DPPs.

(ii) We employed a GCN-based model to combine drug and
protein features with the structural information of the DPP
network.

(iii) The results of our evaluation of this model show that
GCN-DTI outperforms some state-of-the-art approaches
for drug–target interaction prediction.

Methodology
There are three steps in the GCN-DTI method (Figure 1):
construction of the DPP network (section Construction of the
DPP network), encoding by GCN (section GCN-based feature
representation) and classification by DNN (section Classification
by DNN).

Construction of the DPP network

Nodes and edges of DPP network

To analyze the relationships between DPPs, we first construct a
DPP network based on drug and protein networks, which have
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Figure 1. There are three steps in implementing GCN-DTI: construction of the DPP network, encoding by the GCN layer and classification by the DNN. As shown in

the left of step 1, drug and protein networks are constructed based on known drug and protein interactions. The blue triangles denote drugs, and brown points denote

proteins. Next, black dotted lines denote known interaction and grey dotted lines denote unknown interactions. Two drugs and three proteins are used as an example.

The pair made of drug 2 & protein 4 and the pair made of drug 4 & protein 1 can be connected by black dotted lines since they represent known DTIs, while the grey

dotted lines connect the unknown DPPs. Finally, in the right part of step 1, the bold lines denote strong connections and normal black lines denote weak connections.

Here, six DPPs (including two DTIs: D2-P4 and D4-P1) are selected to show the DPP network. Each node (green pentagon) denotes a DPP and each edge denotes an

association between DPPs. Taking D4-P4 as an example, since it shares P4 with D2-P4, the two pairs have a strong connection. Since P4 can interact with P1, D4-P4 can

connect weakly with D2-P1. Since D4 cannot interact with D2 and P4 cannot interact with D4, D4-P4 does not have association with D2-P2 (An ‘association’ is defined

in the section Construction of the DPP network.) In step 2, a GCN is used to extract each DPP feature from the DPP network. Each DPP node contains two pieces of

information marked
[
fdi

, fpi

]
, where fdi

denotes the drug feature and fpi denotes the protein feature. If the number of drugs is n and the number of proteins is m, the

number of nodes in the DPP network would be t = m × n. The adjacency matrix A can be obtained based on the edges of the network, and the weighted matrix W can

be obtained based on three kinds of associations between DPPs. The weighted adjacency matrix Â can be obtained by Â = AW + I, and the information for each node is

integrated with weighted adjacency matrix Â. Finally, the Rectified Linear Unit (ReLU) function is applied as the activation function to obtain the DPP feature. In step

3, three layers have been constructed to map DPP features to their labels. The output of this model is the probability of a DPP being true or false.

corresponding across-network associations based on known
interactions between drugs and proteins. These associations,
which are obtained from the drug–drug interaction networks
and the protein–protein interaction networks, represent the
edges of the DPP network. Each DPP contains a drug and a
protein, and represents a node of the DPP network. Therefore,
the number of nodes in the DPP network is:

T = n × m (1)

where T is the number of nodes in the DPP network, n is the
number of drugs and m is the number of proteins.

We define associations between DPPs as strong associations,
weak associations and non-associations. DPP associations can
therefore be inferred as strongly connected and weakly con-
nected as illustrated here:

(i) If two DPPs share a common drug or protein, they are
defined as strongly connected.

(ii) If there is an association between the drugs or the proteins
in two DPPs, they are defined as weakly connected.

(iii) If the two DPPs do not have a drug or protein in common and
their drugs or proteins also cannot interact with one other,
they are defined as having a non-association.
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If we define any DPP as DiPj, the association of DPPs could be
represented by adjacency matrix A:

A =

∣∣∣∣∣∣∣∣∣∣∣

f (D1P1D1P1) f (D1P1D1P2). . . f (D1P1DnPm)
f (D1P2D1P1) f (D1P2D1P2). . .

· · ·
· · ·

f (D1PmD1P1) . . . f (DnPmDnPm)

∣∣∣∣∣∣∣∣∣∣∣
T×T

(2)

where A represents the adjacency matrix of the DPP network as

well as the edges of the DPP network, and f
(
DiPj, DkPl

)
represents

the function used to calculate the associations between DPPs.
The associations between different DPPs can be calculated as

follows:

f (DiPj, DkPl) =

⎧⎪⎨
⎪⎩

1 max(DiDk, PjPl) = 1
0.5 0 < maxf (DiDk, PjPl) < 1
0 max(DiDk, PjPl) = 0

(3)

where DiDk denotes the interaction between the ith drug and the
kth drug, and PjPl denotes the interaction between the jth protein
and the lth protein.

DPP feature extraction

Next, we extract the biological features of the drugs and targets.
Drug features are defined by chemical categories (e.g. adrenal
cortex hormones, amides, amines and cardiovascular agents).
Protein features are defined by their sequence information and
the chemical properties of their amino acids. The features of
each DPP are made up of the combined features of its drug and
protein molecules.

Protein features. The interaction between a drug and its tar-
get is influenced by the hydrophobicity, polarity and tertiary
structure of the target protein [20]. Furthermore, the patterns of
hydrophobic and hydrophilic residues contribute to a protein’s
structure. Therefore, the hydrophilicity and hydrophobicity of
each amino acid in a protein’s sequence will be extracted as
a chemical characteristic of that protein. The amino acids are
divided into six groups based on their chemical characteristics
[35, 36]: strongly hydrophilic or polar acids (R, D, E, N, Q, K, H),
strongly hydrophobic acids (L, I, A, V, M, F), weakly hydrophilic
or weakly hydrophobic acids (S, T, Y, W), and proline (P), glycine
(G), and cysteine (C), which are in their own categories based on
their unique characteristics.

In addition, the relative proportion of each amino acid in a
sequence is an important consideration when evaluating protein
similarity. Therefore, this is also extracted as a feature.

Taken together, each protein contains a 26-dimensional fea-
ture consisting of 6 chemical characteristics and the relative
proportions of each of the 20 amino acids.

Drug features. Simplified Molecular Input Line Entry Specifi-
cation (SMILES) is commonly used to extract the chemical struc-
ture of drugs [37, 38], since this method can explicitly describe
molecular structure in American Standard Code for Informa-
tion Interchange (ASCII) strings [39]. However, subtle differences
in functional groups can lead to significant differences in the
chemical properties of drugs, even if their SMILES codes are
similar. Therefore, in this paper, the category of a drug is an
important basis for judging its similarity to other drugs. There
are more than 10 000 categories of drugs in DrugBank, so to avoid
the curse of dimensionality, only the most common categories
are used to distinguish drugs.

Since any one drug may have dozens of category labels (e.g. a
single drug can be an amide, an enzymeinhibitor and a steroid),

these categories can accurately reflect many of its characteris-
tics. Compared with its chemical formula and other properties,
a drug’s category is a feature that is relatively easy to extract, is
understandable and can represent the true chemical properties
of the drug. Therefore, the categories of each drug are selected
as a feature.

Since the features of each DPP are obtained by combining
the features of its corresponding drug and target molecules, it is
important that the dimensions of the drug and protein features
are similar in number. This ensures that the DPP features are
not biased towards either source. Since each protein’s feature is
26-dimensional, 25 or 27 categories are selected to encode the
features of the drugs. Changing the number of drugs included in
the DPP network will result in different categories being selected
(see Supplementary Section 1).

GCN-based feature representation

For a given DPP network, G = (V, E), V = {v1, v2, . . . , vn} denotes the
DPP nodes, E ⊆ V×V is the set of edges (i.e. associations between
DPPs) and E = {e1, e2, . . . , em}. Here, n is the number of DPPs and
m is the number of edges.

Adjacency matrix A can be binary or weighted [40]. Since
we have defined three types of associations between DPPs,
the matrix is weighted in this paper such that a strong asso-
ciation = 1, a weak association = 0.5 and a non-association = 0.
Therefore, we define W ∈ R

n×n as the weighted matrix encoding
the weight of the connection between two vertices (i.e. two DPPs).
The weighted matrix W, which can be calculated by Formula
(3), considers whether two DPPs are connected, and if so, how
strongly they are connected. Finally, the weighted adjacency
matrix can be obtained by A′ = A◦W (A′ is the Hadamard product
of A and W).

Generally, each node in a GCN network should contain its
own features [40], so an identity matrix is always added to the
adjacency matrix:

Â = A + I (4)

where A is the network’s adjacency matrix and I is the iden-
tity matrix. However, when calculating adjacency matrix A in
the DPP network, we already incorporate I, so the weighted
adjacency matrix in this paper is Â = A′.

Therefore, the Laplacian matrix should be:

L = D − Â = In − D− 1
2 ÂD− 1

2 (5)

where In is the identity matrix and D is the inverse degree matrix
(see Supplementary Section 2.1).

Finally, the features of each DPP in the network can be
extracted by the GCN using the following formula:

X′ = ReLu
(

D̂− 1
2 ÂD̂

− 1
2 X

)
(6)

where X is the feature vector of each node:

X = [
fd, fp

]
(7)

in which fd denotes the feature of the corresponding drug, and
fP denotes the feature of the corresponding protein. The length
of fP is 26 and the length of fd is 25 or 27. We concatenate fd and
fP as the feature vector for each DPP, so as a result, the features
of each DPP are the combination of the features of its drug and
its protein.
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After GCN encoding, each node (i.e. each DPP) contains all the
information associated with its corresponding drug and protein,
as well as its location in the network.

Classification by DNN

After extracting the features of the DPP network using the GCN,
the DNN model is used as a supervised learning model to deter-
mine the authenticity of the DPPs.

As shown in Figure 2, the DNN model contains three layers.
The number of nodes, activation function and dropout rate of
each layer is also given. The input for this model is the DPP
feature vector, which was extracted using the GCN. For the first
layer, 256 nodes are built using an ReLU function. ReLU activation
is chosen because of its computational efficiency, sparsity and
reduced likelihood of a vanishing gradient. Since this is a two-
class problem, we chose a sigmoid activation function for the
final layer.

Binary cross entropy was chosen as the loss function since it
is the most suitable for two-classification problems. Its output
is relatively easily understood: when yi and

�

y i are equal, the
loss is 0; otherwise, the loss is a positive number. Moreover, the
greater the difference between the two probabilities, the greater
is the loss. Finally, ‘RMSProp’ was chosen as the optimizer (see
Supplementary Section 2.2).

Results
We briefly introduce the datasets we used in the section
Datasets. Details of the experiments conducted using these
datasets are described in the section Experiment setup. Next,
section Performance evaluation in the DrugBank dataset
shows the results of a comparison between GCN-DTI and
six existing methods using the DrugBank dataset. Section
Performance evaluation in the Yamanashi dataset describes
the comparison between the GCN-DTI method and the DDR
method, which performed best among the six existing methods
in the Yamanashi dataset. In the section Types of associations
between drugs and proteins, we evaluate the features used in
our method compared with those used in other methods. Finally,
case studies were conducted to show the validity of the results
obtained using GCN-DTI method.

Datasets

The HIPPIE database [41] was used to obtain information on
protein–protein interactions (PPIs). PPIs with scores greater than
0.5 were selected to build a protein network.

We evaluated our model in data from the Yamanashi [30] and
DrugBank 5.0.3 datasets, which were also used for a study by
Wishart et al. [42]. A total of 1481 known drugs and 1408 known
proteins with 9880 DTIs were extracted from the databases.
The DrugBank database also contains information about drug
interactions for building drug networks.

In addition, 450 new potential drugs and 304 new potential
targets were obtained from the DrugBank database. Drugs that
can interact with more than 500 known drugs were selected as
new drugs. Proteins that can interact with more than 15 known
proteins were selected as new proteins. Here, new drugs are
those that do not have any known targets to interact with, and
new targets are those that do not have any known drugs to
interact with. The definitions of new drugs and targets are the
same as those used in Olayan et al. [26].

Figure 2. The structure of the proposed DNN model.

Experiment setup

To evaluate the algorithm comprehensively, we tested the per-
formance of our method on three tasks: (1) identifying new
drug interactions with known targets, called SD; (2) identifying
new target interactions with known drugs, called ST and (3)
identifying unknown DTIs between known drugs and targets,
called SP (see Supplementary Section 3). In the first case, there
were 1931 drugs (450 new) and 1408 proteins, corresponding
to 633 600 unknown DPPs and 9880 true DPPs (DTIs). In the
second case, there were 1481 drugs and 1712 proteins (304 new),
corresponding to 450 224 unknown DPPs and 9880 true DPPs
(DTIs). In the third case, there were 1481 drugs and 1408 proteins,
corresponding to 2 075 368 unknown DPPs and 9880 true DPPs
(DTIs).

Ten-fold cross-validation was used for each of these three
tests. Positive and negative sets were divided into ten subsets
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each. Then one positive subset and one negative subset were
selected as test sets each time, and the remaining data were used
as training sets. We repeated each test five times to obtain an
average result.

Performance evaluation in the DrugBank dataset

We compared our proposed GCN-DTI method with six existing
methods: ‘DDR’ [26], ‘COSINE’ [43], ‘DNILMF’ [27], ‘NRLMF’ [18],
‘KRONRLS-MKL’ [25] and ‘BLM-NII’ [19].

‘COSINE,’ ‘NRLMF,’ ‘KRONRLS-MKL’ and ‘BLM-NII’ use the
similarities between drugs and proteins to infer drug–target
interactions using a statistical framework, logistic matrix
factorization, improved multiple kernel learning (MKL) and
improved bipartite local model (BLM) methods, respectively.
Although these methods build connections between drugs and
proteins, they do not consider drug and protein networks, which
would cause a loss of information. However, ‘DDR’ and ‘DNILMF’
construct both a drug network and a protein network, which
lead them to extract more chemical and molecular information,
and thus derive more information about similarities. ‘DDR’
uses an RF method to classify DTIs based on different graph-
based features, while ‘DNILMF’ uses logistic matrix factorization.
Although these two methods establish drug and protein
networks separately, they do not consider associations between
different DPPs (see Supplementary Section 4).

Figure 3 shows a comparison of the results obtained using the
DrugBank dataset. Note that since ‘COSINE’ is specifically used
to find protein targets for new chemicals, it could only be tested
on this task.

As shown in Figure 3, compared with the other methods,
GCN-DTI showed a significant improvement in AUPR and also
performed well in terms of AUC. Since the AUC resulting from
the existing methods was already very good, GCN-DTI only
showed a slight improvement in this metric. GCN-DTI performed
best at the SP task in terms of both AUC and AUPR. This demon-
strates that establishing connections between different DTIs can
effectively improve the ability of the algorithm to distinguish
between true and false DTIs. In the SD and ST tasks, some drugs
or targets were not found in the positive set, so the results were
not as good as those for SP.

Performance evaluation in the Yamanashi dataset

Although previous methods have shown satisfactory outcomes
using the Yamanashi dataset, GCN-DTI was implemented in this
dataset to show its general applicability. Four SP tests were per-
formed for enzymes, ion channels, G protein-coupled receptors
and nuclear receptors. Ten-fold cross-validation was also used
for each test. Detailed information about the experimental setup
can be found in the Supplementary Section 5.

Since DDR performed best among the six previous methods
in DrugBank, we compared GCN-DTI with DDR in the Yamanashi
dataset, and the resulting AUC and AUPR values are shown in
Table 1.

Since the improvement of GCN-DTI in the Yamanashi dataset
was not very large, we calculated the variance of the results using
10-cross validation repeated five times to show the stability of
the results.

In summary, these tests run in two independent datasets—
the DrugBank and Yamanashi datasets—showed that GCN-DTI
outperformed all other methods tested. These experiments
demonstrate the general applicability of GCN-DTI.

Table 1. Comparison of GCN-DTI and DDR in AUC and AUPR

Yamanashi E GCN-DTI 0.98 ± 7.6e-4 0.98 ± 4.7e-3
DDR 0.97 ± 1.8e-3 0.92 ± 6.3e-3

IC GCN-DTI 0.98 ± 6.8e-4 0.92 ± 5.4e-3
DDR 0.98 ± 7.7e-4 0.79 ± 8.7e-3

GPCR GCN-DTI 0.97 ± 1.5e-3 0.82 ± 7.5e-3
DDR 0.96 ± 1.8e-3 0.79 ± 8.3e-3

NR GCN-DTI 0.93 ± 2.4e-3 0.85 ± 1.8e-2
DDR 0.92 ± 3.3e-3 0.83 ± 2.4e-2

Bold font indicates the best algorithm in this test.
Four SP tests were performed for enzymes (E), ion channels (IC), G protein-
coupled receptors (GPCR) and nuclear receptors (NR), respectively, in Yamanashi
dataset.

Types of associations between drugs and proteins

There are many ways a drug can interact with a receptor, and
different types of associations will lead to different biochemi-
cal reactions. For example, agonists usually have high intrinsic
activity and can cause biological effects, while antagonists have
low intrinsic activity and do not exert biological effects after
binding to the receptor, but can instead prevent an agonist
from binding to that receptor. The types of associations between
a drug and a protein are keys to determining the effect of a
drug. These actions are divided into more than 30 types (e.g.
inhibitor and antagonist). Due to the importance of the types of
associations between drugs and proteins, we tested the ability of
GCN-DTI to categorize types of associations based on the known
DTIs in DrugBank.

In this database, some actions are less common than others
(see Supplementary Section 6). Therefore, we only tested GCN-
DTI on inhibitors (1120), antagonists (1006), potentiators (286)
and agonists (614), because the majority of DTIs in the dataset
are classified as having those actions.

We considered the identification of association types as a
multi-classification problem, so the four types were labeled as
0, 1, 2 or 3. The activation function of the DNN model’s last
layer was changed for this analysis: the ‘Softmax’ function
was chosen because it is suitable for multi-classification
neural network outputs. In addition, the loss function was
changed to ‘categorical cross-entropy’ (see Supplementary
Section 6).

Finally, the 3026 DTIs were divided into 10 groups for the 10-
fold cross-validation.

As shown in Figure 4, GCN-DTI categorized antagonists best
with 94.53% accuracy. The mean accuracy of the classification of
the 3026 DTIs was 89.76%, which demonstrated the effectiveness
of GCN-DTI in classifying different types of associations.

Case study

Thus far, we have demonstrated the effectiveness of our method
using test datasets. Finally, we built models using the GCN-DTI
method to mine novel interactions.

All positive DTIs from the DrugBank database were used for
training in this model. Since there were a total of 9880 positive
samples, we randomly selected 9880 negative samples from SD,
SP and ST unknown samples, respectively. GCN-DTI was applied
to construct three final models. We found several DTIs, which
were not included in the DrugBank database, and compared
them with other findings from the literature:

(i) An interaction between acetaminophen and DNA poly-
merase epsilon catalytic subunit A was not previously
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Figure 3. Comparison results of GCN-DTI and previous methods.

reported in DrugBank. Prot et al. [44] found that acetaminophen
results in increased expression of POLE mRNA using
hepatoma cells cultivated inside a microfluidic biochip with
or without acetaminophen (APAP). POLE is the coding gene
of DNA polymerase epsilon catalytic subunit A.

(ii) Zheng et al. [45] and Chandrasekaran et al. [46] reported that
acetaminophen can increase the expression of myeloperox-
idase, but this interaction was not found in DrugBank. Both

of those studies investigated the process through which
acetaminophen caused liver injury.

(iii) Tesmilifene was found to downregulate the mRNA expres-
sion of solute carriers by Walter et al. [47]. This is also a novel
DTI found using GCN-DTI.

(iv) Riboldi et al. [48] found that benzydamine strongly inhib-
ited chemoattractant-induced activation of the mitogen-
activated protein kinase (MAPK). The interaction between
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Figure 4. Accuracy of GCN-DTI in identifying types of associations.

benzydamine and MAPK was also identified by GCN-DTI
without a positive result in DrugBank.

(v) Beyer et al. [49] found that acetaminophen affects the
expression of ATP7B mRNA. Furthermore, Jiang et al.
[50] found that acetaminophen results in a decreased
expression of ATP7B mRNA.

These five DTIs are all novel for DrugBank and were identi-
fied by GCN-DTI. These case studies show the reliability of the
results of GCN-DTI and illustrate its ability to identify interac-
tions between drugs and proteins.

Conclusion
There is a growing body of research that seeks to accurately
identify DTIs using computational methods. Although many
methods have achieved high precision using the Yamanashi
dataset, none of the existing methods have yet achieved satisfac-
tory AUPR for the FDA-approved drugs in DrugBank. We believe
that this is because previous methods did not consider asso-
ciations between DPPs. GCN-DTI was developed to overcome
this drawback and was found to achieve improved predictive
accuracy, with high AUPR and AUC values.

Most prior research has focused on constructing separate
drug and protein networks and predicting the edges connecting
the two networks. In contrast, our method constructs a DPP
network in which each node contains the information from its
corresponding drug and protein sub-networks. The relationships
between different DPPs can also be obtained from the corre-
sponding edges of the DPP network. Therefore, our work focuses
on distinguishing true and false DPPs from within a very large
DPP network. A GCN layer is used to extract the features of each
DPP, and then a DNN layer distinguishes between true and false
DPP features.

Nearly, a million nodes are included in the network, so the
adjacency matrix is too large to process as a whole matrix.
Therefore, the encoding process was completed line by line,

which places a high demand on computational resources and
is time consuming. This is a problem that needs to be addressed
in future work.

In conclusion, GCN-DTI substantially improved the accuracy
of identification of interactions between drugs and proteins
when compared with other methods. Three tests with 10-fold
cross-validation were repeated five times to confirm the high
AUC and AUPR of GCN-DTI. In addition, five unknown DTIs
found using GCN-DTI were supported by the existing literature,
which suggests not only the reliability of our results, but also the
effectiveness of GCN-DTI in identifying real-world drug–target
interactions. The code and results of GCN-DTI are uploaded on
Github, which will allow researchers to apply it to other datasets
to test DPPs they are interested in.
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• By integrating multiple types of interactions, we built
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• We employed a GCN-based model to combine drug
and protein features with the structural information
of the DPP network.

• The results of our evaluation of this model show
that our method outperforms six state-of-the-art
approaches for drug–target interaction prediction.

Supplementary Data

Supplementary data are available online at https://academi
c.oup.com/bib.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/advance-article-abstract/doi/10.1093/bib/bbaa044/5828123 by U

niversity of Exeter user on 06 M
ay 2020

http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbaa044/-/DC1
https://academic.oup.com/bib
https://academic.oup.com/bib


Identifying drug–target interactions based on graph convolutional network and deep neural network 9

Funding

National Natural Science Foundation of China (No. 61702421,
U1811262, 61772426); The international Postdoctoral Fellow-
ship Program (no. 20180029); China Postdoctoral Science
Foundation (No. 2017M610651); National Key Research and
Development Program of China (No. 2016YFC0901605);
National Science and Technology Major Project (No. 2016YFC
1202302).

Availability and implementation

https://github.com/zty2009/GCN-DNN/

References
1. Tanoli Z, Alam Z, Ianevski A, et al. Interactive visual anal-

ysis of drug–target interaction networks using drug target
profiler, with applications to precision medicine and drug
repurposing. Brief Bioinform 2020;21:211–20.

2. Xue H, Li J, Xie H, et al. Review of drug repositioning
approaches and resources. Int J Biol Sci 2018;14:1232–44.

3. Schirle M, Jenkins JL. Identifying compound efficacy targets
in phenotypic drug discovery. Drug Discov Today 2016;21:82–9.

4. Lee H, Lee JW. Target identification for biologically active
small molecules using chemical biology approaches. Arch
Pharm Res 2016;39:1193–201.

5. Mathur A, Loskill P, Shao K, et al. Human iPSC-based cardiac
microphysiological system for drug screening applications.
Sci Rep 2015;5:8883.

6. Paul SM, Mytelka DS, Dunwiddie CT, et al. How to improve
R&D productivity: the pharmaceutical industry’s grand chal-
lenge. Nat Rev Drug Discov 2010;9:203.

7. Chen X, Yan CC, Zhang X, et al. Drug–target interaction pre-
diction: databases, web servers and computational models.
Brief Bioinform 2015;17:696–712.

8. Fleuren WW, Alkema W. Application of text mining in the
biomedical domain. Methods 2015;74:97–106.

9. Zhu S, Okuno Y, Tsujimoto G, et al. A probabilistic model for
mining implicit ‘chemical compound–gene’relations from
literature. Bioinformatics 2005;21:ii245–51.

10. Hewett M, Oliver DE, Rubin DL, et al. PharmGKB: the pharma-
cogenetics knowledge base. Nucleic Acids Res 2002;30:163–5.

11. Chen B, Dong X, Jiao D, et al. Chem2Bio2RDF: a seman-
tic framework for linking and data mining chemogenomic
and systems chemical biology data. BMC Bioinformatics 2010;
11:255–5.

12. Fu G, Ding Y, Seal A, et al. Predicting drug target interac-
tions using meta-path-based semantic network analysis.
BMC Bioinformatics 2016;17:160.

13. Fotis C, Antoranz A, Hatziavramidis D, et al. Network-based
technologies for early drug discovery. Drug Discov Today
2018;23:626–35.

14. Lavecchia A. Machine-learning approaches in drug discov-
ery: methods and applications. Drug Discov Today 2015;
20:318–31.

15. Mayr A, Klambauer G, Unterthiner T, et al. Large-scale com-
parison of machine learning methods for drug target predic-
tion on ChEMBL. Chem Sci 2018;9:5441–51.

16. Lo Y-C, Rensi SE, Torng W, et al. Machine learning in
chemoinformatics and drug discovery. Drug Discov Today
2018;23:1538–46.

17. He T, Heidemeyer M, Ban F, et al. SimBoost: a read-across
approach for predicting drug–target binding affinities using
gradient boosting machines. J Chem 2017;9:24.

18. Liu Y, Wu M, Miao C, et al. Neighborhood regularized logistic
matrix factorization for drug-target interaction prediction.
PLoS Comput Biol 2016;12:e1004760.

19. Mei J-P, Kwoh C-K, Yang P, et al. Drug–target interaction
prediction by learning from local information and neighbors.
Bioinformatics 2012;29:238–45.

20. Li Z-C, Huang M-H, Zhong W-Q, et al. Identification of drug–
target interaction from interactome network with ‘guilt-by-
association’principle and topology features. Bioinformatics
2015;32:1057–64.

21. Pei J, Yin N, Ma X, et al. Systems biology brings new
dimensions for structure-based drug design. J Am Chem Soc
2014;136:11556–65.

22. Luo Y, Zhao X, Zhou J, et al. A network integration approach
for drug-target interaction prediction and computational
drug repositioning from heterogeneous information. Nat
Commun 2017;8:573.

23. Lu Y, Guo Y, Korhonen A. Link prediction in drug-target
interactions network using similarity indices. Bmc Bioinfor-
matics 2017;18:39.

24. Vinayagam A, Gibson TE, Lee H-J, et al. Controllability anal-
ysis of the directed human protein interaction network
identifies disease genes and drug targets. Proc Natl Acad Sci
2016;113:4976–81.

25. Nascimento AC, Prudêncio RB, Costa IG. A multiple kernel
learning algorithm for drug-target interaction prediction.
BMC Bioinformatics 2016;17:46.

26. Olayan RS, Ashoor H, Bajic VB. DDR: efficient computational
method to predict drug–target interactions using graph
mining and machine learning approaches. Bioinformatics
2017;34:1164–73.

27. Hao M, Bryant SH, Wang Y. Predicting drug-target interac-
tions by dual-network integrated logistic matrix factoriza-
tion. Sci Rep 2017;7:40376.

28. Zong N, Kim H, Ngo V, et al. Deep mining heterogeneous net-
works of biomedical linked data to predict novel drug–target
associations. Bioinformatics 2017;33:2337–44.
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